skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Steven_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aluminum (Al)‐bearing and iron (Fe)‐bearing minerals, especially short‐range‐ordered (SRO) phases, are thought to protect soil organic C (SOC). However, it remains methodologically challenging to assess the influence of Al vs. Fe minerals or metal complexes. Whereas SRO Al and Fe phases share some properties, Al dissolved by oxalate (Alox) often correlates stronger with SOC than Fe dissolved by oxalate (Feox) or citrate–dithionite (Fecd). To further evaluate these relationships, we analyzed a large North American soil dataset from the National Ecological Observatory Network. A strong relationship between Aloxand SOC (and weaker Feox‐SOC relationship) persisted even after excluding soils rich in SRO minerals (Andisols and Spodosols). Al dissolved by oxalate was strongly correlated with citrate–dithionite‐extractable Al (Alcd; slope = 0.92,R2 = .69), and discrepancies could be explained (R2 = .87) by greater dissolution of Al‐substituted Fe phases by citrate–dithionite and greater dissolution of aluminosilicates by oxalate. Aluminum dissolved by oxalate and Alcdwere both strong SOC predictors despite their differing relationships with silicon (Si). Al dissolved by oxalate and Sioxstrongly covaried (R2 = .79), but Alcdwas inconsistently related to Sicd(R2 = .18). Similar relationships of Aloxand Alcdwith SOC, despite differences in minerals extracted by oxalate and citrate–dithionite, suggest that Al‐OC complexes (as opposed to aluminosilicate or iron‐bearing minerals) were the best SOC predictor. This raises important questions: do Al‐OC complexes indicate protection from decomposition or simply reflect greater intensity of mineral weathering by organic acids; and, if the latter, then perhaps SOC input is driving Aloxand SOC correlations rather than Al phase composition or abundance. 
    more » « less